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Chapter 1

Summary

1.1 Objectives

The objective of this project was to develop and demonstrate, in challenge problems selected by
DARPA DSO, techniques for managing uncertainty in complex dynamnical systems. Out of the
original three-year program, the first two phases were executed. Each of these phases was divided
into tool development as well as meeting challenge problems to demonstrate the convergence of
these tools in concerted efforts.

More explicitly, the overarching goal of the project was to develop tools and workflows for quan-
tifying and managing uncertainty in ways that would perform orders of magnitude faster than
Monte Carlo sampling with controlled, provable scaling (preferably linear in the system size). The
challenge problems were designed to demonstrate progress toward this ultimate goal.

The focus of Phase I was to show that the techniques selected and developed could be applied
correctly to systems of many particles. The two challenge problems for this phase were:

e Self-assembly: Obtain an interaction potential such that a system of particles in a box would
spontaneously asseinble into a lioneycomb structure and compare this to a benchmark solution
from the literature [9, 10].

e Phase diagram: Obtain the plase transition temperature of a noble gas physisorbed on a
graphite substrate, demonstrating that the team could correctly extract comnplex emergent
behavior of a system of 10,000 particles.

Apart from the further development, selection, and implementation of mathematical tools for un-
certainty quantification, Phase II included the following challenge problems:

e Phase diagram with uncertainty: Show orders-of-magnitude speed-up over Monte Carlo san-
pling in the quantification of uncertainty in a complex, uncertain system. The system chosen
for this challenge was a monolayer of carbon monoxide (CO) on graphite in the presence of an
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Figure 1.1: Summary of main rcsults for the self-assembly problem.

uncertain level of argon impurities. The system exhibits a complex phase transition [12] and
the task was to calculate the transition temperature, including its uncertainty, as a function
of the uncertain argon concentration.

e Surveillance: Design search strategies for 50 simulated unmanned acrial vehicles (UAVs) look-
ing for a stationary target in a complex terrain usiug noisy scnsors with uncertain footprint.
Tlie strategics had to exhibit shorter search times than straightforward lawnmower patterns
while still satisfying constraints on detcction (lower bound) and false alarm (upper bound)
probabilitics.

1.2 Summary of accomplishments

The performance requirements from tlie Phase I and II challenge problems were mect, and in some
cases surpassed by orders of magnitude above the required acceleration. Here we summarize the
accomplishments directly related to the challenge problems. Chapter 2 summarizes the tools de-
veloped, organized by themes.

Phase I self-assembly challenge

e Asshown in appendix C.1 and reference [J3|, the team first developed several relevant mctrics
for lattice quality and then applied trend optimization using ridge regression ([J3] and [11]) to
obtain solutions superior (in terms of robustness of the self-assembly) to the benchmark [10].
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The most robust solutions were particularly counterintuitive in that the resulting interaction
potential was purely repulsive. The team also showed that extending the interaction to
anisotropic potentials can yield much more robust self-assembly, even of structures that were
identified in the literature as impossible to obtain through central potentials ([J9] and [10]).

o The self-assembly problem also exposed the team to the state of the art in molecular dynamics
simulation algorithms and, in particular, to the different approaches for simulation of systems
of particles with noise, typically due to contact with a thermal bath. This spurred the
development of a completely novel approach to simulating noisy systems that preserve the
specific structure of the noise in a controlled manner [J2]. In other words, this is the stochastic
equivalent of variational integrators, with the difference that instead of preserving energy (as
in the widely used Verlet algorithm [4]) they preserve the invariant measure.

e Other mathematical results related to the self-assembly challenge are a proof that central
potentials cannot yield certain structures when the system is not confined to a fixed-volume
box [J9] and several provably-correct metrics for quantifying the distance between simulation
results and target lattices (appendix C.2 and [J11]). Finally, several tunable lattice quality
measures were developed (appendix D.2 and [J12]). These can be selected to emphasize
different desired qualities in the target lattice (e.g., shape vs. density) and can be used for
self-assembly as well as for phase diagram computations.

Figure 1.1 summarizes the main results for the self-assembly challenge problem.

Phase I phase diagram challenge

e In appendix E.1 [J17] the team developed a new class of Hidden Markov Models, the finite-
rank optimal-prediction (FRO) model, for quickly learning the dynamics of a system. This
new tool was used to learn from MD simulations of helium atoms physisorbed on graphite the
dynamics of a coarse variable relevant to the phase transition (the potential energy per atom).
The transition is then associated with metastability in the spectrum of the Markov model.
The team showed that it is faster to directly learn when the spectrum exhibits metastability
than to directly simulate the system until it settles into its stationary distribution. The
method was later extended into reference [C4], where it was applied to fast decentralized
control over networks through the construction of multiple local Markov models.

e Model order reduction was approached from the point of view of data clustering and stochastic
modeling. A Markov matrix whose state space is the possible size of clusters can be learned
from the simulation of molecular systeins at specific conditions, such as temperature, density
and pressure with prior belief. The expectation value of an invariant distribution of learned
Markov matrix indicates the phase transition of the molecular dynamics system qualitatively
while the second largest eigenvalue modulus can be used as a quantitative indicator. As a
consequence, the stochastic reduced order model not only reduces the order of the system
based on the choice of coarse variable but also provides an insight of macroscopic properties.
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Figure 1.2: Summary of phase I results for the phase diagram problem.

Heuristic graph decomposition Bayesian estimation is shown to be more reliable and robust
than maximum likelihood estimation because it reflects prior information on the system.

e Two orders of magnitude acceleration over Molecular Dynamics 10,000 atom baseline was
achieved by running a reduced size system of only 100 particles. To assess the error in the
phase transition temperature determined using lower number of atoms in MD simulation,
convergence of the phase transition temperature was studied using numerical and analytical
methods.

e In reference [J1] the team builds on the Coarse Molecular Dynamics technique [1] to obtain
the order-to-disorder transition temperature of krypton physisorbed on graphite. The team
obtains 5x acceleration compared to standard MD measurements of Huctuations of the to-
tal energy. The CMD technique falls under the umbrella of the more general equation-free
methods, in which the macroscopic evolution of a system is simulated by doing short bursts
of microscopic-level simulations compatible with the required macroscopic state. Initializ-
ing such microscopic systems is called lifting, and doing it efficiently is an area of active
development (see appendix B.7 and [J8]).

e A parallel effort for the krypton problem (appendix D.1) was to extend the use of quenching
simulations [5] by developing pattern boundary detection methods to separate high and low
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Figure 1.3: Summary of Phase II results for the phase diagram problem. From left to right: system
snapshot showing pinwheel structures around argon impurities (blue); flip moves used in Ising-type
model; heat capacity curves for different impurity concentrations; acceleration in calculation of the
transition temperature for Monte Carlo (blue) and PCM (red).

density regions that appear spontaneously in first order phase transitions.

Figure 1.2 summarizes these results. Note that, in order to obtain a good match with the experi-
mental results from the literature for the case of heliuin, the team had to add a quantum-mechanical
correction to the classical potential used in the simulations. This correction, based on Feynman'’s
quasi-classical potential, went beyond the asymptotic approximations from [14] that were used in
the theoretical calculations of reference [2].

Phase II phase diagram with uncertainty challenge Appendix D.3 [J21] focuses on the low
temperature phase transition for carbon monoxide (CO) physisorbed on a graphite substrate.

e The team first developed an Ising-type model for the system that accurately captures the
phase transition in the presence of an uncertain concentration of argon impurities.

e Since in the simulations the number of argon impurities had to be an integer, the team
had to extend the Polynomial Chaos-based Probabilistic Collocation Method [3] to the case
where the uncertain parameters can only take integer valucs, leading to a rare application of
Krawtchouk polynomials. PCM allowed the tcain to calculate the mean and variance of the
phase transition temperature 2000 times faster than Monte Carlo sampling [J21].

e The team’s result settled the scientific question of whether the ground state of CO on graphite
is head-to-head ordered or head-to-tail ordered in favor of the latter. Furthermore, the team
showed that formation of pinwheel regions of CO around argon atoms are at the origin of the
anomalous effect of stabilization of the low-tcmperature phasc [J21].

Figure 1.3 shows the system, a typical configuration in the Ising-type model, a representative
flip move (molecule rotation) in the computational procedure, the variations in the specific heat
vs. temperature curves, and the comparative acceleration of PCM over Monte Carlo.
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Phase II surveillance challenge Appendix A as well as references [J4, J6, J13, J18, J19],
[C5], and [6] contain extended reports on results relevant to the surveillance challenge problem.
Figure 1.4 shows the search area used by the team to compare the performance of the algorithms
developed in the project with that of both standard and “smart” lawnmower search patterns that
take into account the prior distribution for the single target. The challenge included the following
constraints, so as to make the different algorithms comparable:

e There is a single, immobile target to be found.

e The vehicles’ sensors have a small footprint compared to the total search area (0.1% for
one sensor, 5% for the whole swarm) and their dynamics must be constrained (speed and
acceleration limits).

e The sensors are noisy: at each observation, a sensor has a probability of detection sq < 1 and
false alarm sg > 0.

e The terrain includes foliage. If the target is in the foliage, it is undetectable. The algorithms
must be able to conclude that the target is undetectable after a finite time.

e The algorithms as a whole must exhibit a global probability of detection above a given thresh-
old Py global and false alarm rate below a given threshold P, giobal-

Under these coustraints, the algorithms compete for lowest median detection time.

As shown in figure 1.4, two different lines of attack yielded successful practical search strategies:
Spectral Multiscale Search (SMS), Greedy Spirals, and Dynamic Greedy Search (DyGS). Each uses
a very different approach and has its own strengths. These strengths treat different axes of the
problem and could in the future be combined into a unified approach to control a swarm of UAVs
performing autonomous search missions. Both methods achieved almost 2x reduction in median
search time conipared with smart lawnmower.

Spectral Multiscale Search, or SMS (appendix A.1 and [J13]), which combines a novel application
of the Neyman-Pearson lemma [J6] with a Lyapunov method, is a fully-autonomous approach
that flexibly dictates the required control forces on the whole swarm at every time step. Given
the prior distribution for the single target, the method evaluates low much the time-integrated
coverage differs from the prior, using a specially-designed weighted measure that yields a naturally
multiscale approach. The method spontaneously spreads out the vehicles, initially covering the
large-scale features of the prior and then filling in the smaller scale details. As shown in figure 1.4,
this method can take into consideration both uniform and nonuniform priors. The vehicles avoid
the foliage when possible, but spontaneously fly over it when needed to cover a different region.

Figure 1.4 also shows the ROC (Receiver Operating Characteristic) curves associated with the SMS
decision algorithm [J13]. For a given sensor quality (i.e., for given parameters sq and sg,) these
curves show graphically the effect of taking repeated measurements in an area and help determine
how much coverage is needed before the global constraints Py giobal and P global are satisfied.

Dynamic Greedy Search, or DyGS (appendix A.2 and [J4]), is made of two parts: a grid-free decision
algorithm and a trajectory planner. The trajectory planner is based on a specially-developed
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Greedy Spirals, and DyGS (see text). The bottom shows an approach combining helicopter model
trajectory segments and roadmap planning for near-real time control of UAVs over Fort Benning,




1.3. ORGANIZATION OF THE REPORT

method for optimizing dynamically the path to take in a computationally tractable manner while
still producing realizable trajectories. It is based on the use of a library of elementary trajectory
segments that individually satisfy the vehicle dynainics and can be interlocked to produce large
scale roadmaps (see also section 2.3.1).

Even though the challenge problems focused on the detection of a single target, the teamn identified
that the need to detect multiple targets would naturally arise in the future, and the necessary
mathematics to treat this problem in a computationally-efficient manner had to be developed.
Appendix A.4 (see also [C5]) develops such tools. The approach is novel in that it makes efficient
a computation that in its original forin is computationally intractable.

1.3 Organization of the report

The summary of accomplishments presented above focuses on the convergence of the different tools
selected and developed as applied to the solution of the Phase I and Phase II challenge problems.
In contrast, chapter 2 summarizes other tools that were mostly preparation for Phase III and were,
for the most part, not used directly in the solution of the Phase I and Phase II challenge probleins.

For published results we include the reference to the appropriate journal or conference proceedings,
while for results that are submitted or in preparation we include the full drafts or internal reports as
appendices. The appendices are mostly self-contained, and as such the citations in the appendices
refer to their own bibliographies, and not to the report’s main bibliography.
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Chapter 2

Other tools developed

This project deals with the quantification and robust management of uncertainty in complex sys-
tems. In view of the goal of a real-time demonstration, many tools were developed with the goal
of supporting fast, decentralized analysis of the situation, as well as efficient design of vehicle
trajectories compatible with complex dynamics.

In this chapter we describe some of the tools developed. As these focused on improving different
aspects of the problem, the tools are very heterogeneous, and fall broadly in the following three
categories:

o Graph theoretic methods for systein analysis and uncertainty quantification
o Decentralized estimation

e Design of dynamics

2.1 Graph theoretic methods for system analysis and uncertainty
quantification

In order to make a system of many interacting components tractable, the system must be analyzed
and divided into weakly connected components such that each individual component is of reasonable
size. However the automatic detection of such components is a difficult task. Appendices B.5
and B.6 [J14, J15] focus on the analysis of such systems using graph-theoretic techniques to obtain
both weak connections as well as causal chains. The latter are important for predicting the flow of
information, and therefore uncertainty propagation, through such a system.

Similar methods were applied in reference [C3], where waveformn relaxation was used to simulate
a system with weakly connected components. This method was further extended in [J24] (see
appendix B.1) into a unified, scalable approach to uncertainty quantification. Further uncertainty
quantification techniques are compared in appendix B.2

11



2.2. DECENTRALIZED ESTIMATION

Another use of graph-theoretic techniques is the application of diffusion maps to detect slow vari-
ables in a system [J22]. Once such slow variables have been found, an equation-free approach can
be used to accelerate the simulation of the system (see [J1, J8| and [1, 13, 15]).

Finally, reference [J23] uses the connectivity of a network to do global filtering of noisy measure-
nients.

2.2 Decentralized estimation

In anticipation of future challenges where many vehicles are collaborating in an environment with
limited communication (or, equivalently, to extend life in power-limited wireless networks), several
tools were developed to deal with decentralized estimation.

e For large networks and, in particular, for networks where the connectivity is changing dy-
namically), stochastic multiscale consensus was developed [C2]. Here each node decides at
random whether to simply pass along a measurement received from a different node or to do
a computation on it. The act of passing information along produces long scale connections
that accelcrate the convergence of consensus algorithms.

e For the problemn of searching for a target, appendix B.3 deals with the issue of several different
noisy sensors having to make a decision as to whether the target has been detected based on
the limited information they have shared up to that point.

2.3 Design of dynamics tools

The area of design of dynamics encompasses both the design of systems that will spontaneously
behave in a desired way as well as simplifying computations on complex systems so the problem of
assigning tasks becomes tractable.

Examples of design of systems that spontaneously behave as desired are given in appendix C, where
the self-assembly tools are described in detail. A related problem is that of targeted activation [C1],
where the dynamics of the system are exploited to minimize the required energy input to obtain
global reconfigurations.

For simplifying computations in systems with many independent actuators, a good example is the
fast reconstruction of wavefronts for telescopes with adaptive optics (see [8] and [7] for experimental
validation). Also, see appendix B.4, where a connection to the problem of self-localization is made.

2.3.1 Control optimization of vehicles with obstacle avoidance

With the goal of developing eflicient methods to control vehicles with complex dynamics in en-
vironments with obstacles, a general framework was developed for integrating the dynamics and
optimizing the motions of mechanical systems. The resulting algorithms are superior to standard

12



2.3. DESIGN OF DYNAMICS TOOLS

methods in numerical robustness and eflciency, and can be applied to many types of vehicles such
as simple helicopters and hovercraft.

The general approach is based on a combination of standard optimal control techniques and classical
search and dynamic programining methods. These methods stand on top of a robust numerical
representation of the underlying vehicle dynamics derived using the theory of discrete mechanics.
The main results can be summarized as:

e structure-respecting geometric discretization of mechanical systems with symmetries, internal
actuated shape, and nonholonomic constraints

e discrete optimal control formulation that respects the geometric structure

e combining the derived local optimal control techniques with global search methods in order
to guarantee near-globally optimal solutions

e extending the basic motion planning framework to handle more specific tasks such as time-
varying goal state, maximizing sensor coverage, deploying multiple vehicles to maximize in-
formation about a goal with uncertain dynamics multiple vehicles

13
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In Proceedings of the American Control Conference, Seattle, 2008.
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[C2] J.-H. Kim, M. West, S. Lall, E. Scholte, and A. Banaszuk. Stochastic multiscale approaches
to consensus problems. In Proceedings of the 47th IEEE Conference on Decision and Control,
pages 5351-5557, Cancun, Mexico, 2008.

[C3] G. Mathew, S. P. Meyn, and A. Banaszuk. Waveform relaxation and graph decomposition.
In Proceedings of the 18th International Symposium on Mathematical Theory of Networks
and Systems, Blacksburg, Virginia, 2008.

[C4] S. P. Meyn and G. Mathew. Shannon meets Bellinan: Feature based Markovian models for
detection and optimization. In Proceedings of the 47th IEEE Conference on Decision and
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[C5] S. Nair, K. Reddy, H. Owhadi, and J. Marsden. Multitarget detection using Baycsian learn-
ing. Submitted to the 48th IEEE Conference on Decision and Control, 2009.

4.3 Invited sessions

The following invited sessions and minisymposia were organized with AFOSR support and contain
AFOSR-funded papers:

e SIAM Conference on Applications of Dynamical Systems 2007. Minisymposia: Uncertainty
quantification in large-scale dynamical systems, Parts I and II.

e Mathematical Theory of Networks and Systems 2008. Special scssion on robust uncertainty
management.

e Allerton Conference on Communication, Control, and Computing 2008. Session: Optimiza-
tion and learning.

e 47th IEEE Conference on Decision and Control 2008. Session: Complex systems: multiplayer
models.

e SIAM Conference on Applications of Dynamical Systeins 2009. Minisymposia: Uncertainty
quantification of high-dimensional randoin dynamical systems, Parts I and II.

e SIAM Conference on Applications of Dynamical Systems 2009. Minisymposium: Uncertainty
management and trajectory plannning in dynamic multi-agent surveillance systems.

e SIAM Conference on Applications of Dynamical Systems 2009. Minisymposium: Graph-
theoretic methods for analysis of complex networks.

e 48th IEEE Conference on Decision and Control 2009. Sessions: Learning and control, Parts
I and II.
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4.4 Plenary, Keynote and Invited talks

e 2007 SIAM conference of Control Theory, San Francisco CA. Plenary talk, A. Banaszuk.
e 2008 Stanford Structured Integrator Workshop. H. Owhadi.
e Dynamics Days 2008, Knoxville, Tennessee. Invited talk, A. Banaszuk.

e Lecture series on networks and complex systems. Lunteren Conference on the Mathematics
of Operations Research, January 13-15, 2009. S. P. Meyn.

e SIAM Conference on Applications of Dynamical Systems 2009, Snowbird UT. Plenary talk,
Igor Mezi¢.
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Spectral Multi-Scale Search

Alice Hubenko®, Vladimir Fonoberov', George Matthew!, and Igor Mezi¢$

January 22, 2009

Abstract

We present a search algorithm for single or multiple searchers that finds a stationary target
in presence of uncertainty in sensor radius. The considered uncertainty condition simulate the
influence of the changing environment that occur in practical applications. Uncertainty in sensor
radius sets this problem apart from the usual search and surveillance problem setting. Given Pp
and Pr 4, the algorithm minimizes search time to find the target with probability of detection at
least Pp and probability of false alarm at most Pr4. We prove that the algorithm discovers the
target with the desired efficiency. Computer simulations show that our algorithm has excellent
performance when compared with Billiard search which is a type of random search. Form the
design of the algorithm, it follows that the search time is inversely proportional to the number of

searchers participating.

1 Introduction

Study of search problems as formalized mathematical models started more than 60 years ago, for a
survey see [1]. During World War II mathematical theory was applied for the first time to locate Ger-
man submarine threats in the Atlantic. Since its first applications search theory developed somewhat
detached from practical applications. Our theory stands out from this trend because it uses realistic
dynamics to model movement of searchers and in addition it is, apparently, the first model in literature
that incorporates uncertainty in sensor radius that is a significant factor that affects search missions in

real life. An extensively studied setting that is similar to ours, see [2], [6], is when a target is located

*Department of Mechanical Engineering, University of California, Santa Barbara, CA
1AIMdyn, Inc., Santa Barbara, CA. E-mail: vfonoberov@aimdyn.com

'Department of Mechanical Engineering, University of California, Santa Barbara, CA
SDepartment of Mechanical Engineering, University of California, Santa Barbara, CA

21



A.L

SPECTRAL MULTI-SCALE SEARCH

somewhere in a region that is partitioned into a number of cells. The probability distribution for
the targets position (i.e., the probability that the target is in any particular cell), and the detection
function of our sensor (i.e., the probability of detection versus effort spent searching a cell, given that
the target resides in that cell) are given. The goal is to maximize the probability of detection of
the target, assumed that amount of total effort available for the search is fixed. A major drawback
of this problem is its discrete setup, that would require perfectly functioning sensors. Besides, the
theoretical solutions given to this problem assume that the search effort is infinitely divisible between
cells and result in trajcctories that would be physically hard to follow. Recently, several application
oriented algorithms have been developed for similar problems. 8] presents a receding-horizon cooper-
ative scarch algorithm that jointly optimizes routes and sensor orientations for a team of autonomous
agents searching for a mobile target. The algorithm in [8] reduces the continuous search problem
to an optimization on a finite graph. In [11] a framework for cooperative search using UAV swarms
is described. The algorithm in [11] sweeps the area with UAVs flying side-by-side in straight lines.
Unfortunately, both algorithms of [8] and [11] do not take into account changes in the environment
that may occur. The changing environment (such as wind or fog) may alter the effective radius of
the sensor. This would lead to leaving parts of the area completely uncovered and would reduce the
performance of the search algorithm. We consider the search problem where a stationary target is
placed in an area A that contains foliage F' that the sensors can not penetrate. We consider the a
priori distribution of the location of the target known (if it is not given we assume it to be the uniform
distribution). The searchers move through the area A in continuous motion and use a circular sensor
to scan the area. Our goal is to minimize search time in the presence of uncertainty in sensor radius
while keeping the probability of detection of our algorithm above threshold Pp and probability of
false alarm of the algorithm below threshold Pr4. In our Spectral Multi Scale (SMS) algorithm we
utilize the Neyman-Pearson lemma, that is central in binary hypothesis testing theory, to design the
decision making rulc, that allows the searchers to quickly locate target suspects as they cover the area.
The algorithm puts some of the searchers in rechecking mode to take some additional measurements
at target suspects positions. This strategy ensures that the probability of false alarm is within the
required threshold. We use the H~! coverage strategy described in Section 3 to cover the area A.
We tested the SMS algorithm with 50 searchers for different a-priori target distributions, each time
making 5000 independent simulations. Our computer simulations show that besides demonstrating
superior robustness in presence of uncertainty the SMS search vastly outperforms Billiard search when
searchers start out in random directions and move in straight lines, reflecting when they reach the

border. The median absolute deviation of SMS search time is 1.5 times smaller than that of Billiard
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search; median search time of SMS search is 1.6 tiines smaller than that of Billiard search; median
detection time of SMS search 1.7 times smaller than that of Billiard search. Another imnportant ad-
vantage of the SMS algorithm its effective use of assets: the search time is inversely proportional to
the number of searchers. So, for example, if we have two searchers instead of one, the expected search

time is half of what we would expect with one searcher.

2 The decision making strategy

Let us consider the problem where N searchers are moving inside a search area A in R? with the
objective to detect a point-like target. We assuine that each searcher has a circular sensor with radius
at most 8. We will consider various scenarios for uncertainty in sensor radius. The target can be either
in the search area A or in the foliage F' where the searcher can not detect it. We assume that with
probability a the target is in F' and with probability 1 — a the target is in S = A\ F. We assume
that the probability distribution of location of the target is known. The probability of detection for
a single measurement, sy, is the probability of getting a reading 1 on our sensor, assuming that the
target is within the sensing area. The probability of false alarm for a single measurement, sy,, is the
probability of getting a reading 1, assuming that the target is not within the sensing area. Note, that
for any sensor sy > sf,. The studies on real-life sensors indicate that as sy increases, so does sy,.

We denote by Pyp the probability of declaring that the target is in foliage, assuming that the
target is in S. We denote by Pr4 the probability of detecting the target in S, assuming that the
target is not in that location. In the simulation setting it translates to the following, as seen in [5].
Denote the number of realizations of the whole search scenario Ng, the number of times the algorithm
declared finding target and the target was not there N4, the number of times target was detectable
(in S) Np, and the number of times the target was detectable but the algorithm declared that it is in
the foliage Nyp.

Npa
Prg= lim —=
Np—=oo Np

N
Pyp = lim . L)
R—YO0 ND

During the course of the algorithm the searcher moves in S, taking measurements with frequency
f. For easier description of our decision making procedure, let us first assume that the searcher moves
around S in steps. In each step the searcher is allowed to make several independent measurements with

his sensor. Assume that at each step the searcher takes ng independent measurements, and declares
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detection of target if at least 49 + 1 of the measurements are 1s. The Neyman-Pearson criterion (see
[4]) allows us to find ng and o that maximize the probability of detection while the probability of
false alarm stays under some prescribed bound (Pr4). The Neyman-Pearson lemma (sec [4]) implies

that the optimal ng and g are the solutions to the following optimization problem.

1o

o\ & = n =
Pra=Plk> ] +pPlk=2]= Y ( k)sh(l—sfa)"*’ ’°+p(7§)s}‘;<1—sfa)"° o
k=v0+1

n

1 — Pyp = Plk > vo] + pPlk = 0] = Zn: (72()) sh(l —sa)™F + P(ZE)SZOU =t ™ @)

k=~0+1

We first find minimal 7 satisfying (1) when p = 0. Because at this point 7 is unknown, 9 = vo(ng)
is a function of ng. Next, from the equation (1) we find p = p(ng). Finally, we substitute vo(ng) and
p(ng) into (2)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>